Osmotic and chill activation of glycine betaine porter II in Listeria monocytogenes membrane vesicles.

نویسندگان

  • P N Gerhardt
  • L Tombras Smith
  • G M Smith
چکیده

Listeria monocytogenes is a foodborne pathogen known for its tolerance to conditions of osmotic and chill stress. Accumulation of glycine betaine has been found to be important in the organism's tolerance to both of these stresses. A procedure was developed for the purification of membranes from L. monocytogenes cells in which the putative ATP-driven glycine betaine permease glycine betaine porter II (Gbu) is functional. As is the case for the L. monocytogenes sodium-driven glycine betaine uptake system (glycine betaine porter I), uptake in this vesicle system was dependent on energization by ascorbate-phenazine methosulfate. Vesicles lacking the gbu gene product had no uptake activity. Transport by this porter did not require sodium ion and could be driven only weakly by artificial gradients. Uptake rates could be manipulated under conditions not affecting secondary transport but known to affect ATPase activity. The system was shown to be both osmotically activated and cryoactivated. Under conditions of osmotic activation, the system exhibited Arrhenius-type behavior although the uptake rates were profoundly affected by the physical state of the membrane, with breaks in Arrhenius curves at approximately 10 and 18 degrees C. In the absence of osmotic activation, the permease could be activated by decreasing temperature within the range of 15 to 4 degrees C. Kinetic analyses of the permease at 30 degrees C revealed K(m) values for glycine betaine of 1.2 and 2.9 microM with V(max) values of 2,200 and 3,700 pmol/min. mg of protein under conditions of optimal osmotic activation as mediated by KCl and sucrose, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of glycine betaine porter I from Listeria monocytogenes and its roles in salt and chill tolerance.

Listeria monocytogenes is a pathogenic bacterium that can grow at low temperatures and elevated osmolarity. The organism survives these stresses by the intracellular accumulation of osmolytes: low-molecular-weight organic compounds which exert a counterbalancing force. The primary osmolyte in L. monocytogenes is glycine betaine, which is accumulated from the environment via two transport system...

متن کامل

Role of the glycine betaine and carnitine transporters in adaptation of Listeria monocytogenes to chill stress in defined medium.

The food-borne pathogen Listeria monocytogenes proliferates at refrigeration temperatures, rendering refrigeration ineffective in the preservation of Listeria-contaminated foods. The uptake and intracellular accumulation of the potent compatible solutes glycine betaine and carnitine has been shown to be a key mediator of the pathogen's cold-tolerant phenotype. To date, three compatible solute s...

متن کامل

Glycine betaine confers enhanced osmotolerance and cryotolerance on Listeria monocytogenes.

Listeria monocytogenes is a gram-positive food-borne pathogen that is notably resistant to osmotic stress and can grow at refrigerator temperatures. These two characteristics make it an insidious threat to public health. Like several other organisms, L. monocytogenes accumulates glycine betaine, a ubiquitous and effective osmolyte, intracellularly when grown under osmotic stress. However, it al...

متن کامل

Three transporters mediate uptake of glycine betaine and carnitine by Listeria monocytogenes in response to hyperosmotic stress.

The uptake and accumulation of the potent osmolytes glycine betaine and carnitine enable the food-borne pathogen Listeria monocytogenes to proliferate in environments of elevated osmotic stress, often rendering salt-based food preservation inadequate. To date, three osmolyte transport systems are known to operate in L. monocytogenes: glycine betaine porter I (BetL), glycine betaine porter II (G...

متن کامل

Elevated carnitine accumulation by Listeria monocytogenes impaired in glycine betaine transport is insufficient to restore wild-type cryotolerance in milk whey.

Listeria monocytogenes accumulates low molecular weight compounds (osmolytes, or compatible solutes) in response to chill stress. This response has been shown to be responsible, in part, for the chill tolerance of the species. Among the osmolytes tested to date, glycine betaine, gamma-butyrobetaine and carnitine display the strongest cryoprotective effect. These osmolytes are not synthesized in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 182 9  شماره 

صفحات  -

تاریخ انتشار 2000